Fundamental Limit to Linear One-Dimensional Slow Light Structures
نویسندگان
چکیده
منابع مشابه
Fundamental limit to linear one-dimensional slow light structures.
Using a new general approach to limits in optical structures that counts orthogonal waves generated by scattering, we derive an upper limit to the number of bits of delay possible in one-dimensional slow light structures that are based on linear optical response to the signal field. The limit is essentially the product of the length of the structure in wavelengths and the largest relative chang...
متن کاملFundamental limit of light trapping in grating structures.
We use a rigorous electromagnetic approach to analyze the fundamental limit of light-trapping enhancement in grating structures. This limit can exceed the bulk limit of 4n², but has significant angular dependency. We explicitly show that 2D gratings provide more enhancement than 1D gratings. We also show the effects of the grating profile's symmetry on the absorption enhancement limit. Numerica...
متن کاملTransmission properties of one dimensional fractal structures
In this paper, the optical properties of one dimensional fractal structures are investigated. We consider six typical fractal photonic structures: the symmetric dual cantor-like fractal structure, the asymmetric dual cantor-like fractal structure, the single cantor-like fractal structure, the symmetric dual golden-section fractal structure, the asymmetric dual golden-section fractal structure a...
متن کاملBroadband slow light in one-dimensional logically combined photonic crystals.
Here, we demonstrate the broadband slow light effects in a new family of one dimensional photonic crystals, which are obtained by logically combining two photonic crystals of slightly different periods. The logical combination slowly destroys the original translational symmetries of the individual photonic crystals. Consequently, the Bloch modes of the individual photonic crystals with differen...
متن کاملFundamental limits to slow-light arrayed-waveguide-grating spectrometers.
We present an analytical model that describes the limiting spectral performance of arrayed-waveguide-grating (AWG) spectrometers that incorporate slow-light methods. We show that the loss-limited spectral resolution of a slow-light grating-based spectrometer scales as the loss-group-index ratio of the waveguide array. We further show that one can achieve a spectral resolution of a few GHz using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review Letters
سال: 2007
ISSN: 0031-9007,1079-7114
DOI: 10.1103/physrevlett.99.203903